返回

大国院士

首页
关灯
护眼
字体:
第一百八十章:用世界级数学难题来检验自己的学习
上一页 目录 下一页
  川用圆珠笔将脑海中的一些知识点重新写了一遍。

  今年上半年,他跟随着的德利涅和威腾两位导师,学到了相当多的东西。

  特别是在数学领域中的群构、微分方程、代数、代数几何这几块,可以说极大的充实了自己。

  而米尔扎哈尼教授留给他的稿纸上,有着一部分微分代数簇相关的知识点,他现在正在整理的就是这方面的知识。

  众所周知,代数簇是代数几何里最基本的研究对象。

  而在代数几何学上,代数簇是多项式集合的公共零点解的集合。历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。biqugee6.com

  20世纪以来,复数域上代数几何中的超越方法也有重大的进展。

  例如,德·拉姆的解析上同调理论,霍奇的调和积分理论的应用,小平邦彦和斯潘塞的变形理论等等。

  这使得代数几何的研究可以应用偏微分方程、微分几何、拓扑学等理论。

  而这其中,代数几何的核心代数簇也被随之应用到其他领域中,如今的代数簇已经以平行推广到代数微分方程,偏微分方程等领域。

  但在代数簇中,依旧有着一些重要的问题没有解决。

  其中最关键的两个分别是‘微分代数簇的不可缩分解’和‘差分代数簇的不可约分解’。

  尽管Ritt等数学家早在二十世纪三十年代就已经证明:任意一个差分代数簇可以分解为不可约差分代数簇的并。

  但是这一结果的构造性算法一直未能给出。

  简单的来说,就是数学家们已经知道了结果是对的,却找不到一条可以对这个结果进行验算的路。

  这样说虽然有些粗糙,但却是相当合适。

  ….而在米尔扎哈尼教授的稿纸上,徐川看到了这位女菲尔兹奖得主朝这方面努力的一些心得。

  应该是受到了此前他在普林斯顿交流会上的影响,米尔扎哈尼教授在尝试给定两个不可约微分升列AS1,AS2,判定SAT(AS1)是否包含SAT(AS2)。

  这是‘微分代数簇的不可缩分解’的核心问题。

  熟悉了整个稿纸,并且跟随德利涅教授在这方面深入学习过的他,很容易的就理解了米尔扎哈尼教授的想法。

  在这个核心问题中,米尔扎哈尼教授提出了一个不算全新却也新颖的想法。

  她试图通过构建一个代数群、子群和环面,来进一步做推进。

  而建立这些东西所使用的灵感和方法,就来源于他之前在普林斯顿的交流会以及Weyl-Berry猜想的证明论文上。

  ......

  “很巧妙的方法,或许真的能将代数簇推广到代数微分方程上面去,可能过程会稍微曲折了一点......”

  盯着稿纸上的笔迹,徐川眼眸中流露出一丝兴趣,从桌上扯过一张打印纸,手中的圆珠笔在上面记录了起来。

  “.....微分代数簇的不可缩分解问题从广义上来讲,其实已经被Ritt-吴分解定理包含在内了。”

  “但是Ritt-吴分解定理在有限步内构造不可约升列ASk,并构建了诸多的分解,而在这些分解中,有些分支是多余的.要想去掉这些多余分支,就需要计算SAT(AS)的生成基了。”

  “......因为归根到底,它最终可降解为Ritt问题。即:A是含有n个变量的不可约微分多项式,判定(0,···,0)是否属于Zero(SAT(A))。”

  “......”

  手中的圆珠笔,一字一句的将心中的想法铺设在打印纸上。

  这是开始解决问题前的基本工作,很多数学教授或者科研人员都有这样的习惯,并不是徐川的独有习惯。

  将问题和自己的思路、想法清晰的用笔纸记录下来,然后详细的过一遍,整理一边。

  这就像是写之前写大纲一样。

  它能保证你在完结手中的书籍前,核心剧情都是一直围绕主线来进行的;而不至于离谱到原本是都市文娱文,写着写着就修仙去了。

  搞数学比写稍稍好一点,数学不怕脑洞,怕的是你
第一百八十章:用世界级数学难题来检验自己的学习(2/3).继续阅读
《 加入书签,方便阅读 》
上一页 目录 下一页